Projektträger Jülich - 29.08.2011 11:19:40
URL: https://www.erasysbio.net/


ModHeart - Modelling the genetic network controlling heart development using the model organism Drosophila melanogaster.

Developmental geneticists have unraveled the transcription factors and signaling pathways that control the formation of the cardiovascular system. These investigations have demonstrated a clear conservation of genetic control, from Drosophila to mammals. However, what these pathways control in terms of downstream gene networks and how they dynamically interact to control the diversification and the differentiation of cardiomyocytes remains largely unknown. A detailed understanding of these processes will provide essential insights into both normal and pathological heart development.
Drosophila is an excellent model system to study gene regulatory networks involved in cardiac organogenesis: in addition to the wealth of genetic and genomic tools available, this ?simple? genetic model organism possesses a fluid pumping heart. Our objectives are to generate and integrate genome-wide qualitative and quantitative data to dissect the Gene Regulatory Network that dynamically controls the diversification and progressive differentiation of the cardiovascular system in Drosophila. More precisely, we will:
? Generate large scale data sets by ChIP-seq and transcriptomics to describe the direct transcriptional target genes and their enhancers (cis-regulatory control elements).
? Use computational tools to integrate and analyse the newly generated datasets with pre-existing public data (coming from large scale transcriptome, proteome, and interactome screens, as well as low-throughput data documented in scientific articles and public databases).
? Establish predictive, qualitative and quantitative dynamical models of the regulatory network controlling cardioblast cell specification and differentiation.
? Exploit the genetic tools (reporter gene essays, in situ hybridization, targeted overexpression mediated gain of function, dsRNA mediated gene function knockdown...) available in Drosophila to validate and refine theses models.
? Use computational tools to evaluate the conservation of the underlying regulatory circuits from insects to mammals.
Overall, this project will contribute to building a systems-level view of Drosophila heart development and will benefit from the balanced expertise of its members..


Project partners:

Laurent Perrin (Project Coordinator)
Developmental Biology Institute of Marseille-Luminy, FR
»website

Christine Brun
TAGC, FR »website

Krzysztof Jagla
GReD - UMR6247, FR »website

Eileen Furlong
EMBL Heidelberg, DE »website

Johannes Jaeger
EMBL/CRG Barcelona, ES »website


© Projektträger JülichOnline 2006
Alle Rechte vorbehalten